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1.0 SUMMARY 
Analysis of the needs of a US Air Force Pararescue Program has determined that there is a need 
for improved monitoring of injured persons during the initial stages of rescue operations. This 
need stems from real world observation of both combat and non-combat rescue scenarios. 

The requirements of monitoring systems for use in rescue operations are nearly identical to those 
of civilian mass-casualty emergencies. The underlying problem in both situations is one of 
insufficient numbers or responders to treat the numbers and nature of the casualties. The 
techniques employed in these scenarios focus not strictly on treating the most severe casualties, 
but in efficiently dividing resources so that as many lives can be saved as possible. Treatment of 
those casualties with the most life threatening conditions may often be delayed in favor of 
rescuing casualties with less severe injuries. 

This research investigates the impact that different methods of multi-hop networking may have 
in providing responders with timely vital sign data for large numbers of casualties. This is 
accomplished through a mobile adhoc network (MANET) simulation of an imagined body-
mounted sensor platform that provides several basic vital sign signals. This facilitates further 
development of a functional system by identifying the strengths and weaknesses of different 
multi-hopping techniques and provides insight into which characteristics lead to the most 
resilient and reliable systems for casualty rescue. 

This research was heavily influenced by findings from the CodeBlue project developed by 
Harvard Sensor Networks Lab [1], the Advanced Health and Disaster Aid Network [2], and the 
WIISARD SAGE Project [3]. 
 
 
2.0 INTRODUCTION 
The requirements of the monitoring systems must be compatible with the rescue techniques and 
procedures employed. In comparison to traditional patient monitors, they must be lighter weight, 
wireless and battery-powered and they should provide a limited amount of high value 
information that can increase the situation awareness of the lead responders. 

A wide variety of sensor types can provide value in a mass casualty operation and it is easy to 
overlook those sensors which provide the greatest value in favor of those that are frequently 
associated with medical operations. Two of the most important pieces of information that are 
often overlooked are the need for localization and the need to capture and organize the diagnosis 
performed by the responders. The former helps facilitate the prioritization of rescue individuals 
as they are treated and evacuated. The latter captures the opinions of the trained responder, 
usually in the form of a triage tag. While vital sign signals are valuable, particularly in the need 
to capture trending data, the analysis of a trained professional with the ability to visually inspect 
the nature and severity of an injury is far more critical. Of particular interest are sensors that can 
provide updates on temperature, respiration rate, and circulation parameters such as blood 
oxygen saturation and heart rate at regular intervals.   

Limiting the total payload of data that needs to be transferred between casualty and responder 
allow for several design trades that could enhance the reliability of the system including a wider 
variety of wireless technology options and the possibility to use multi-hop routing techniques. 
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Sensors that produce continuous streams of unprocessed data, such as an electrocardiogram, 
would be used only when necessary during a mass casualty event. Not only would they consume 
too many precious network resources, but the analysis of the signals requires a high level of 
attention from responders and can reduce situation awareness. This can be particularly 
detrimental in combat rescue scenarios when additional emphasis is placed on expeditiously 
removing casualties from harm’s way in order to prevent additional casualties. 

The simulation described here used the TinyOS 2.x simulator (TOSSIM) to simulate the 
transmission of vital sign data between multiple casualties and multiple responders. TinyOS was 
chosen because it incorporates the means to use many multi-hop routing techniques and it is used 
with IEEE 802.15.4 hardware, which represents a reasonable and popular choice for vital sign 
sensors. 

Additionally, the simulation was designed to account for the absorptive effect of the body and 
mobility. All vital signs were collected and sent from a single node every 10 seconds and the 
results were evaluated in respect to their ability to enhance responder situation awareness by 
reliably delivering data in a timely manner. 
 
 
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Simulation Parameters 
A series of scenarios were constructed following an analysis of rescue procedures. Depending on 
the threat environment, vital sign monitors may need to be applied upon initial contact with an 
injured person and will likely be needed throughout all phases of triage until the casualty is 
evacuated from the site. One scenario was manually constructed to test communication 
representative of casualties closely grouped at a casualty collection point. Other scenarios with 
random distributions of 10 to 35 casualties were constructed for mass casualties to simulate the 
unpredictable nature of rescue scenarios. Additionally a scenario representing large scale 
casualty event was modeled using a random distribution of 100 casualties with multiple response 
teams. The following is a description of these scenarios 

 
• Figure 1 depicts a group of nine closely spaced casualties as might be encountered at a 

casualty collection point. In many of these types of situations, security takes priority over 
medical treatment of the wounded, so it assumed that only two responders are available 
to provide medical care during triage. 

• Figure 2 depicts a randomly generated group of casualties over a 50 m by 50 m field. 
Several of these are generated for analysis. Casualty numbers range from 10 to 35 in 
accordance with the design goals of our program. The response team is comprised of a 
centrally located team leader and 4 to 6 other responders. 

• Figure 3 depicts an extreme mass casualty or disaster event with 100 casualties randomly 
distributed over a 200 m by 200 m field. Four response teams are present and the team 
leaders have portioned the field into quarters. Each responder is with a randomly selected 
casualty. This test case is represents a design requirement in excess of the program goals, 
but will provide additional information in stress testing the systems.  
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Figure 1. Closely Spaced Casualties With Three Rescue Personnel 

 
 

 
Figure 2. Example Randomly Distributed Casualties Over 50 x 50 Meter Area 

 
 

-3

-1

1

3

5

7

9

-3 -1 1 3 5 7 9 11

Casualties Responders Lead Reasponder

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50
Casualties Responders Lead Responders



4 
Distribution A: Approved for public release; distribution unlimited.   

88 ABW Cleared 01/21/2014; 88ABW-2014-0189. 

 
Figure 3. Example of 100 Randomly Distributed Casualties Over 200 x 200 Meter Area 

with Multiple Response Teams 
 
 

Table 1 shows the complete list of tested conditions and the designated identifier. For all of these 
scenarios, path loss/gains between all devices needs to be estimated based on the distance 
between node locations. Performing this estimation requires some assumptions be made with 
respect to the final hardware. TOSSIM assumes that the model uses the MICAz wireless sensor 
which is available from MEMSIC. The MICAz incorporates a Texas Instruments CC2420 radio. 
This radio is also used on the MEMSIC TELOSB platform which has very similar RF 
characteristics. The performance of these two systems is well documented in research and 
provides conservative performance parameters for future wireless mote systems. 
 
TOSSIM requires that each node to node link be described by a gain value. This is obtained 
through the Log Distance Path Loss Model which can be generalized from [4]. 

𝑷 =  −𝟏𝟎 𝒏 𝐥𝐨𝐠𝟏𝟎(𝒅) + 𝑨                                                 ( 1 ) 
Where A is the gain offset for a distance of 1 meter. For the CC2420 radio, Texas Instruments 
specifies a loss of -45 dBm when used with the default transmission power of 0 dBm [5]. These 
simulations use the default transmission power, but elect for a more conservative gain offset of -
48 dBm as verified in [6]. The path loss exponent, 𝑛, varies with environment. Use of the model 
has been validated in both indoor and outdoor environments in [7] and [6]. An ideal 
configuration such as a long corridor can be modeled using 𝑛 = 2, whereas a typical indoor 
environment without wall obstructions may be best modeled with 𝑛 = 2.8 [7]. Outdoor spaces 
can vary greatly produced path losses of 𝑛 = 2.1 [7] and 𝑛 = 2.3 [6] to n=3.5 [8]. The 
simulations use the path loss exponent of 2.3. 
 
Additionally the simulation can be enhanced through modification of the noise floor. One 
approach to this is to use a worst case indoor environment with heavy wireless 802.11b usage. 
For 802.15.4 solutions, this often represents the worst case. TinyOS includes a noise model that 
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is representative of this type of environment in noise readings taken at the Stanford University 
Meyer Library [9]. However, it should be recognized that this type of noise environment may be 
an exceptional case that would most likely apply only to indoor and urban environments and 
these simulation do not address many of the other wireless communication issues that would be 
associated with an indoor environment and for that reason it is best to model a challenging 
outdoor environment for these scenarios. A model using Gaussian distributed noise floor with a 
mean of -97 dBm and a standard deviation of 2 dBm was selected. A singular simulation is 
performed using the noise readings from the Meyer Library in order to demonstrate the effects of 
increased RF noise. 
 
 

Table 1. Simulation Conditions and Identifiers 

Test Condition Identifier Description 

C1_STATIC Stationary nodes at collection point; 9 casualties, 2 responders, 1 lead 
responder 

C2_MOBILE Mobile nodes moving at 1 m/s; 50 x 50 meter map; 25 casualties, 4 
responders, 1 lead responder 

C3_MOBILE_SPARSE Same as C2_MOBILE with 10 casualties, 2 responders, 1 lead responder 

C4_MOBILE_DENSE Same as C2_MOBILE with 35 casualties, 6 responders, 1 lead responder 

C5_MOBILE_SLOW Same as C2_MOBILE with node speed set to 0.25 m/s 

C6_MOBILE_NOISY Same as C2_MOBILE  with noise readings from Stanford Meyer Library 

C7_MOBILE_LARGE Mobile nodes; 250 x 250 meter map; 100 casualties, 20 responders, 4 lead 
responders 

 
 
Finally, the model should be modified to accommodate the effect caused by the human body. It 
is reasonable to assume that medical sensors would be attached to the upper body of a patient. 
Most likely, the head, neck, chest or arm. Ideally, this simulation would be able to account for 
casualties in the prone position; however, information to accommodate this in simulation has not 
been located in existing literature. This simulation will assume that all casualties are in an 
upright position with a chest mounted sensor and rely on data that can be gathered from [10]. 
Table 2 shows the propagation losses caused by the proximity of the human body. Intermediate 
losses between the values in the table were computed by interpolation. 
 
In the case of communication between nodes mounted on separate bodies, the path loss model 
was modified to incorporate the costs caused by each body 

𝑷 =  −𝟏𝟎 𝒏 𝐥𝐨𝐠𝟏𝟎(𝒅) + 𝑨 + 𝑩𝒐𝒅𝒚𝑪𝒐𝒔𝒕𝟏(𝜽𝟏) + 𝑩𝒐𝒅𝒚𝑪𝒐𝒔𝒕𝟐(𝜽𝟐)               ( 2 ) 



6 
Distribution A: Approved for public release; distribution unlimited.   

88 ABW Cleared 01/21/2014; 88ABW-2014-0189. 

Simulations were run for 3700 seconds.  In all but one simulation nodes would move at a speed 
of 1 m/s in the direction of a random waypoint, with a new waypoint being generated every 30 
seconds. A node did not stop if the waypoint was reached but continued through the point and 
continued to travel with the same heading. During all path loss calculations, it was assumed that 
the body was facing in the direction of travel. The location of the node representing lead 
responders remained stationary and changed its heading every 30 seconds. In one simulation, the 
speed was slowed to 0.25 m/s and new waypoints were generated every 120 seconds. 
 
 

Table 2. Propagation Losses Due to Body (0 degrees is Forward from Body) 
Angle (degrees) Loss (dBm) 

0 -7 

60 -7 

120 -17 

180 -27 

240 -17 

300 -7 

360 -7 

 
 

3.2 Sensor Emulation 
The simulation was designed to represent nodes that passed along very limited amounts of data 
needed to describe the most basic vital signs of a casualty. Vital signs such as temperature, blood 
oxygen saturation, heart rate, and blood pressure were considered. It was assumed that all of 
these vital signs could be represented in a 10 byte message structure. This message was sent by 
every node, every 10 seconds. Nodes were booted at random intervals between 1 and 10 seconds. 

3.3 Protocol Implementations 
Four separate protocols were simulated to observe how the varying characteristics of each led to 
different outcomes. The first, termed “Broadcast” was designed to have each node broadcast its 
message and incorporated no more advanced networking features. The second, termed “Flood”, 
once again had each node broadcast its message, but also incorporated a simple flood based 
architecture in which listening nodes would repeat any message that they had not previously 
received. Many flooding techniques incorporate random back-off timers to avoid contention 
when rebroadcasting. This implementation did not. The third, termed “DYMO”, used the 
Dynamic MANET On-demand Routing Protocol (DYMO) implementation that is included with 
TinyOS, TYMO. The fourth, termed Dissemination used the Designated Relays Inquiry Protocol 
(DRIP) Dissemination protocol included in TinyOS. 
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DYMO was selected for investigation because it represents a class of routing algorithms which 
rely on background activities to collect and update information regarding available routes and 
varying techniques for route maintenance and discovery. Other popular examples include Adhoc 
on Demand Distance Vector (AODV), and Dynamic Source Routing (DSR). The fact that 
DYMO is considered to be a successor to AODV with changes designed to make the system 
more tolerant of mobility made it particularly appealing because AODV is nearly identical to the 
routing protocol used in ZigBee products. Since ZigBee software stacks are widely available and 
since a standard exists for ZigBee use in healthcare, it is a very appealing option for wireless 
system designers. The performance of DYMO, which is more suited for mobile applications, in 
many ways represents a best case for ZigBee and other similar products. DYMO is excluded 
from some simulations and evaluations. The design of the protocol requires that each sensor 
node be aware of the monitoring node addresses. This presents two problems. First, DYMO is 
not multicast, so each node needs to individually send messages to each receiving node. Second, 
since each sender needs to know the destination addresses, it would be impractical to implement 
this protocol in a scheme where monitoring node numbers and addresses are not predetermined, 
so the DYMO is only be evaluated in its ability to deliver sensor data to a single monitoring 
station and is excluded from all evaluations involving multiple monitoring stations. 
 
Dissemination was chosen as a representative of routing protocols that implement various forms 
of delay tolerant networking (DTN). Nodes use a store and forward approach to sending 
messages. The WIISARD SAGE project demonstrated that a custom designed routing protocol 
which incorporated DTN approaches was much more successful in transferring triage tag type of 
data to responders [3]. Vital sign needs to be transferred to the closest responders in a more 
timely fashion than tag data in order to illicit a quick response when needed. Dissemination was 
chosen in order to investigate the suitability of DTN protocols for providing frequent updates to 
nearby responders while allowing for increased delay in transferring information to more distant 
responders. 
 
 
4.0 RESULTS AND DISCUSSION 
The simulations provided time information data from which message sent and received times by 
disparate nodes could be determined.  This information needed to be condensed into a metric that 
would be indicative of the responders experience with the device. The responders are primarily 
interested in facilitating the situation awareness of the lead responder in monitoring for changing 
patient vital signs by improving data availability. Data availability will be enhanced in this case 
by ensuring the timeliest delivery of sensor data. The level of situation awareness is directly 
related to the lag time between successive updates for each patient. In order to assess the 
reliability of the simulated systems in elevating situation awareness, it is therefore necessary to 
quantify the lag experienced by the lead responder in observing the vital signs by each patient. 
 
Figure 4 shows the results that were generated for the C2_MOBILE condition. This can then be 
used to evaluate on a percentile basis, the system’s ability to deliver data at a rate greater than the 
independent time variable. For example, if the desire is for data lag to be no greater than 25 
seconds, then Figure 4 can be used to determine that a system equipped with Dissemination 
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would provide the responder with this level of performance 82% of the time and would fail to 
perform to this level 18% of the time. 
 
Results for all conditions were evaluated in this manner by evaluating the distribution curves at 
lag times of 25, 55, and 115 seconds. The degree to which they failed to perform is summarized 
in Table 3. 
 
 

 
Figure 4. Simulation Results for the Basic Mobile Simulation 
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Table 3. Summary of Simulations with Lag CDF Values at 25, 55 and 115 Second Times 
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Figure 5. The Effect of Increased Noise on Routing Method Performance 

 
 

5.0 CONCLUSIONS 
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method under a specific test condition. 
 
Figure 5 illustrates the degradation caused in a high noise environment. The basic Broadcast 
method was only slightly degraded, but the simple Flood protocol which extended Broadcast 
with a forwarding scheme showed a high level of performance degradation. In fact, the noise 
nearly eliminated any benefit of multi-hopping in this simplistic method. DYMO showed 
extremely poor performance. This is not entirely surprising as the protocol relies on large 
amounts of background messaging to create routes that are a necessary precursor to sending 
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Figure 6. Effect of Patient Mobility on Routing Method Performance 
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Figure 7. Effects of Node Density on Routing Method Performance 
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further modification. However, it is likely that improvement could be made that take greater 
advantage of data muling as well as slightly more aggressive flooding and a mechanism for 
responder nodes to actively request updates to the oldest sets of patient data. These results also 
provide us with a way to estimate network performance of a given system with varying node 
densities. This can be used to make more informed design trades in the determination of 
transmission power, antenna design, and body placement. A better understanding of real world 
scenarios and their associated node densities, node mobility, and environments will be needed in 
order to facilitate the use of this approach in system design. 
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LIST OF SYMBOLS, ABBREVIAIOTNS, AND ACRONYMS 
 

AODV Adaptive On-Demand Distance Vector routing 

DSR Dynamic Source Routing 

DTN Delay Tolerant Networking  

DYMO Dynamic MANET On-demand routing 

MANET Mobile Adhoc NETwork 
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